Shit in -> shit out 📤

  • kromem@lemmy.world
    link
    fedilink
    English
    arrow-up
    19
    ·
    edit-2
    1 year ago

    I think people may be confused about what this is saying, so an example might help.

    Remember when Stable Diffusion first came out and you could spot AI generated images as if they killed your father and should be prepared to die?

    Had those six+ digit monstrosities been fed back into training the model, you’d have quickly ended up with models generating images with even worse hands from hell.

    But looking at a study like this and worrying about AI generated content poisoning the Internet for future training is probably overblown.

    Because AI content doesn’t just find its way onto the web directly the way it is in this (and the Stanford) study. Often a human is selecting from multiple outputs to decide what to post, or even if it is directly posted, humans are voting content up or down based on perceived quality.

    So practically, if models were being trained recursively on popular content online that had been generated by AI, it wouldn’t be content that overfits spider hands or striped faces or misshapen pupils or repetitive text or broken links or any other number of issues generative AI currently has.

    Because of the expense in human review of generated content this and the previous paper aren’t replicating the circumstances that real world recursive training of a mixed human and AI Internet would represent, and the issues which arose will likely be significantly muted in real world circumstances outside the lab.

    TL;DR: Humans filtering out six fingered outputs (and similar) as time goes on is a critical piece of the practical infrastructure which isn’t being represented, and this is simply a cautionary tale against directly piping too much synthetic data back into training.