Well, the typical way of measuring q does measure the energy it takes to get the boulder up the hill, but not the inefficiency of the machine to get the boulder up there and the ineffency in extracting its energy as it goes back down.
There’s a lot of unsexy research that could make fusion come a whole lot sooner. More efficient powerful lasers, better cooling methods and design for superconducting electromagnetics, more efficient containment methods and more thought on how to extract energy from the plasma efficiently, and then making it cheap enough to build and maintain that we can actually afford to build them.
A lot of incredible science would be involved. And much much more money and a lot of time.
If we (humanity) could achieve that, that would be really cool.
But: how much solar-, wind- and battery-farms could we built with the same money and in much less time?
Fusion is great, but it will probably not be the solution of the energy demand we currently have.
Nevertheless it’s something we should pursue furthermore. But we shouldn’t bet everything on it.
> But: how much solar-, wind- and battery-farms could we built with the same money and in much less time?
Why would it have to be either / or? Fusion research funding is frankly ridiculously low as it is, so it’s not like it’s eating into funds that could be used for building renewable power stations.
Yeah it’s mind-boggling how underfunded fusion research is, considering the potential payoff. Fission is great in many ways, but it requires finding and handling spicy rocks & their by-products that will make your DNA fall into pieces if you’re not careful, which is not so great.
Fusion would be clean and damn near free energy (in the sense that the fuel isn’t rare or expensive), and unlike renewables you’d get output practically 24/7 and at massively better W/m2 (eg wind generator parks take up a lot of space). We need both renewables and a reliable and non-polluting steady state generation method, and regular nukes have a lot of downsides (even the modular designs.)
Well, the typical way of measuring q does measure the energy it takes to get the boulder up the hill, but not the inefficiency of the machine to get the boulder up there and the ineffency in extracting its energy as it goes back down.
There’s a lot of unsexy research that could make fusion come a whole lot sooner. More efficient powerful lasers, better cooling methods and design for superconducting electromagnetics, more efficient containment methods and more thought on how to extract energy from the plasma efficiently, and then making it cheap enough to build and maintain that we can actually afford to build them.
A lot of incredible science would be involved. And much much more money and a lot of time.
If we (humanity) could achieve that, that would be really cool.
But: how much solar-, wind- and battery-farms could we built with the same money and in much less time?
Fusion is great, but it will probably not be the solution of the energy demand we currently have. Nevertheless it’s something we should pursue furthermore. But we shouldn’t bet everything on it.
> But: how much solar-, wind- and battery-farms could we built with the same money and in much less time?
Why would it have to be either / or? Fusion research funding is frankly ridiculously low as it is, so it’s not like it’s eating into funds that could be used for building renewable power stations.
In fact, fusion funding is so low, it’s frankly surprising we make any progress at all.
Fusion funding projections from 1976.
Yeah it’s mind-boggling how underfunded fusion research is, considering the potential payoff. Fission is great in many ways, but it requires finding and handling spicy rocks & their by-products that will make your DNA fall into pieces if you’re not careful, which is not so great.
Fusion would be clean and damn near free energy (in the sense that the fuel isn’t rare or expensive), and unlike renewables you’d get output practically 24/7 and at massively better W/m2 (eg wind generator parks take up a lot of space). We need both renewables and a reliable and non-polluting steady state generation method, and regular nukes have a lot of downsides (even the modular designs.)
> eg wind generator parks take up a lot of space
Though the vast majority of this space can still be used. I live near a wind farm and the area under the turbines still is ranchland. There are cows just chilling under them. The wind company pays farmers for the land in a long term lease agreement: https://www.wri.org/insights/how-wind-turbines-are-providing-safety-net-rural-farmers.
Oh yeah absolutely, I just meant that you need a lot of land for both wind and solar (and solar’s worse in this regard)